| | | | Weekly Combin | ed Science revision cou | ıntdown plan | | |----|----------------|--|--|---|------------------------------------|--| | | () | (revision guide / workbook page numbers) | | | | | | | w/c | *content across both paper 1 and paper 2 | | | | | | | | Pauline Propries | | | | | | 15 | | Revise Practice The *Key concepts The 1. Draw a labelled diagram of a plant and an animal cell The table to tab | | | | | | 15 | | in biology (1- | Produce a poster to summarise enzymes. Include- examples of enzyme sin | | | | | | | 11) | nutrition, how enzymes work including the lock and key model and | | | | | | | ☐ Cells and | denaturation | | | | | | ∞. | Control (13-18) | 3. Draw a diagram of the stages of mitosis | | | | | | 5.01.18 | ☐ Genetics (20- | 4. Draw a diagram of the stages of meiosis | | | | | | 15.0 | 26) | 5. Draw a table comparing mitosis and meiosis | | | | | | ` ' | | 6. Draw a table summarising the pros and cons of stem cell use (compare both | | | | | | | | embryonic and adult stem cells) | | | | | | | | 7. Draw a diagram of DNA including the base pairs 8. Draw a genetic diagram to show a cross between a heterozygous purple | | | | | | | | 8. • Draw a genetic diagram to show a cross between a heterozygous purple (dominate) flower (Rr) and a homozygous recessive white flower (rr) | | | | | 14 | | ☐ States of | | | onversions between the 3 states of | | | | | matter (112) | matter | - | | | | | | ☐ Methods of | 2. Explain why mi | Explain why mixtures melt over a range of temperatures but pure | | | | | | separating and | | e precise melting point | | | | | | purifying | | 3. Draw the labelled laboratory apparatus for: | | | | | | substances | | a. Filtration | | | | | .18 | (113-118) | | b. Crystallisation | | | | | 22.01.18 | structure(91- | | c. Chromatography d. Distillation | | | | | 22 | 92) | e. Fractional distillation | | | | | | | □ * The periodic | 4. Draw flow charts to describe 2 ways in which water can be made fit to drink. | | | | | | | table (93-95) | 5. Draw and label the structure of an atom including the mass and charge of | | | | | | | | the subatomic particles. | | | | | | | | | 6. What is an isotope?7. What were the key features of Mendeleev's periodic table? | | | | | | | | | - | | | 13 | | ☐ Motion (167- | | 8. Draw the electronic configurations for lithium, magnesium and calcium.1. What are vector and scalar quantities? | | | | | | 170) | Draw a sketch distance/time graph with annotated <u>lines</u> showing constant | | | | | | | ☐ Forces and | slow speed, constant fast speed, stationary object and changing speed. | | | | | | | motion (172- | 3. A cheetah accelerates from rest to 30m/s in 3 seconds. Calculate the | | | | | | | 180) | acceleration of the cheetah. | | | | | | | ☐ Conservation of | 4. The data below shows some data from a train journey. Plot it as a | | | | | | | energy(182- | velocity/time graph and join the points with straight lines. Label your graph | | | | | | | 184) | with all of the things that you can tell are happening at each stage. Calculate the distance travelled. | | | | | | ∞ _i | | the distance travelled. | | | | | | 29.01.18 | | Time (s) | Velocity (m/s) |] | | | | 29.(| | 0 | 0 | 1 | | | | | | 20 | 10 | | | | | | | 30 | 30 | _ | | | | | | 60 | 30 | | | | | | | 120 0 | | | | | | | | 5. Draw a labelled cartoon strip showing how the forces of a skydiver change on her fall. | | | | | | | | 6. A car has a mass of 1800kg. It is moving with a velocity of 35m/s. calculate | | | | | | | | the momentum of the car. | | | | | | | l | 1 | | | | | 12 | 05.02.18 | | Plant structures
and their
functions (50-
56)
Animal
coordination,
control and
homeostasis | Label a cross section diagram of a leaf (print one from google images rather than drawing one!) Write a word and balanced symbol equation for photosynthesis Sketch graphs to show the limiting factors of photosynthesis Draw an outline of a body and label the sites of hormone production including names of hormones and the effects they have Draw a flow chart to show the effects of adrenaline Label a diagram of the menstrual cycle | | |----|----------|--|---|---|--| | | | | (58-64) | 7. Produce a poster to summarise the hormones involved in the menstrual cycle and the effects they have | | | | | | | 8. Produce a poster to summarise type 1 and 2 diabetes including causes and treatments | | | | | | | Half Term Holidays | | | 11 | | | Exchange and | Draw a levelled diagram of the alveoli | | | | | | transport in | 2. Draw a table comparing the blood vessels | | | | | | animals(66-74) | 3. Label a diagram of the heart (print one from google images rather than | | | | ~ | | Ecosystems and | drawing one!) | | | | 19.02.18 | | material cycles | 4. Write a word and balanced symbol equation for aerobic and anaerobic | | | | 9.0 | | (76-85) | respiration Froduce a table listing examples of biotic and abiotic factors Ketch a graph to show a predator- prey cycle | | | | 13 | | | | | | | | | | 7. Draw a flow chart to show the stages of eutrophication | | | | | | | 8. Sketch the water, carbon and nitrogen cycles | | | | | | | | | | 10 | | | * Ionic | Draw a dot and cross diagram to show how ions form when sodium and | | | | | | bonding(96-98) | chlorine atoms react | | | | | | * Covalent | 2. Make a poster summarising the properties of ionic compounds | | | | | | bonding (99- | 3. Draw a dot and cross diagram to show the covalent bonds formed when | | | | 18 | | 101) | carbon dioxide is formed | | | | 26.02.18 | | * Types of | 4. Describe the 4 allotropes of carbon including an explanation of their | | | | 26. | | substances(101- | properties 5. Use knowledge of metallic bonding to explain the properties of metals | | | | | | • | Ose knowledge of metallic bonding to explain the properties of metals Produce a table comparing ionic, covalent and metallic bonding | | | | | | | 7. Calculate the relative formula mass (M _r) of carbon dioxide (CO ₂) | | | | | | involving masses (105- | 8. Calculate the mass of chlorine needed to make 53.4g of aluminium chloride | | | | | | 110) | | | | | | | | | | | 9 | | | Groups in the | 1. By referring to atomic structure, using diagrams, explain why potassium is | | | |---------|----------|--------------|------------------|---|--|--| | | | | periodic | more reactive than sodium. | | | | | | | table(143-147) | 2. State the properties of the halogens chlorine, bromine and iodine. Predict | | | | | | | Rates of | the state and appearance of astatine (At) | | | | | | | reaction (149- | 3. Explain, using diagrams, why fluorine is the most reactive halogen and | | | | | | | 150) | astatine is the least reactive. | | | | | | | Heat energy | 4. Explain some uses of the noble gases. | | | | | | | changes in | 5. Explain 4 factors that alter the rate of a chemical reaction. Use diagrams to | | | | | | | chemical | illustrate your explanations. | | | | | ∞ | | reactions (152- | 6. Draw a reaction profile that shows how a catalyst speeds up a reaction. | | | | | 3.1 | | 154) | 7. Write definitions for exothermic and endothermic reactions. Draw an energy | | | | | 05.03.18 | | Fuels (155-161) | profile for each. | | | | | 0 | | Earth and | 8. Using the bond energies below calculate the energy change when methane | | | | | | | atmospheric | burns completely in oxygen to form carbon dioxide and water (CH $_4$ + 2O $_2$ \rightarrow | | | | | | | science (163- | CO ₂ + 2H ₂ O) | | | | | | | 164) | Covalent bond | Bond energy (kJ mol ⁻¹) | | | | | | | C-O | 358 | | | | | | | C-H | 413 | | | | | | | H-H | 436 | | | | | | | O-H | 464 | | | | | | | 0=0 | 498 | | | | | | | C=O | 805 | | | 8 | | | Energy – forces | 1. Write out the ed | uation for work done, including | units. | | | | | and doing work | Write out the equation for work done, including units. | | | | | | | (213) | 3. List 3 contact forces and 3 non-contact forces. | | | | | | | Forces and their | | force diagrams to show the verti | ical forces on a person | | | | | effects(215- | - | r and the forces acting on a car to | | | | | | 217) | speed. | <u> </u> | 3 | | | | | Electricity and | 5. Draw the follow | ing circuits: | | | | | | circuits (219- | | es circuit with 2 lamps | | | | 18 | | 231) | | es circuit with a switch and 4 lam | nps | | | 2.03.18 | | 201) | c. Circuit with 2 lamps in parallel | | | | | 12.0 | | | d. Circuit with 2 lamps in parallel d. Circuit containing 3 lamps, 1 in series and 2 in parallel. Include 3 | | | | | | | | switches (both open an d closed) to show how two of the lamps | | | | | | | | | d be lit and one of them unlit. | • | | | | | | 6. Write a method | that could be used to investigat | e the relationship between | | | | | | | ence, current and resistance for a | | | | | | | lamp. | | | | | | | | 7. Draw labelled diagrams showing how the resistance of an LDR changes with | | | | | | | | light intensity and the resistance of a thermistor changes with temperature. | | | | | | | | | symbols for each component. | Ç | | 7 | | | Magnetism and | | in which the magnetic field arou | and a wire can be changed. | | | | | motor effect | 2. What is the mot | <u> </u> | Ü | | | | | (233-235) | | structure of a transformer and d | escribe the difference | | | | | Electromagnetic | | up and a step down transformer | | | | | _ | induction (237- | 4. Calculate the m | | =?, V _s =5V, I _s =2A | | | ~ | | 238) | | agrams for a solid, a liquid and a | | | | 19.03.18 | I_{\sqcap} | Particle model | | out solids cannot. | 7 / // | | | 9.0 | | (240-245) | 6. A swimming pool contains 2500m ³ of water. The water has a density of | | | | | 15 | | Forces and | 1000kg/m ³ . Calculate the mass of water in the pool. | | | | | | | matter (247- | - | diagram showing the heating cu | | | | | | 249) | each section. | 5 | | | | | | 273) | | solute zero is using 'kinetic energ | gy' and 'absolute zero' in | | | | | | your answer. | and the state of t | ,, aasonato 2010 III | | | | | | | on/force graph comparing a spri | ng and a rubber band | | <u></u> | | | | J. Diaw all extells | on, force braph companing a spin | יים מוומ מ ומטטכו טמוומ. | | 6 | 26.03.18 | | Biology paper 1 extended response questions (12, 19, 28, 35, 49) | | | |---|---|--|---|--|--| | | Easter Holidays Chemistry paper 1 extended response questions (119, 127, 131, 140) Physics paper 1 extended response questions (218, 232, 236, 239, 246, 250) | | | | | | 5 | 16.04.18 | □ Natural selection and genetic modification (29-34) □ Health, disease and development of medicines (36-48) | Draw a flow chart to show the steps in genetic engineering of a bacterium Draw a flow chart to show how smoking leads to CVD Draw a summary table including: type of pathogen (e.g. virus), example of disease, symptoms, ways spread can be reduced and treatments Draw an outline of a body and label how the body protects against pathogens Draw a flow chart to show the body's internal responses to pathogens | | | | 4 | 23.04.18 | Acids and alkalis (120-126) Electrolytic processes (128-120) Obtaining and using metals (132-139) Reversible reactions and equilibria(141-142) | Produce a table listing 3 common acids and 3 common alkalis including their formula Write the general equation for neutralisation reactions with metal oxides Write the general equation for when an alkali is added to a base Draw a flowchart to explain the steps in preparing a soluble salt from an insoluble base Describe how titration is used to prepare soluble salts Write the general equation for when a metal and an acid react Write the general equation for when a metal carbonate reacts with an acid Draw a labelled diagram to show what happens in electrolysis of sodium chloride Compare and contrast biological and non-biological methods of extraction Write a definition and give an example for oxidation and reduction Label a fractional distillation column Draw the structural formula for the alkanes methane, ethane and propane Write the word and symbol equations for complete and incomplete combustion Draw a diagram to show how you would use cracking to break down paraffin in the lab. Produce a table comparing petrol and hydrogen as fuels Write a definition for a hydrocarbon, alkane and alkene Produce a poster to summarise how the earth's early atmosphere formed and changed over time Draw a diagram to explain global warming and the greenhouse effect | | | | 3 | 30.04.18 | □ Waves (188-192) □ Light and the electromagnetic spectrum (194-198) □ Radioactivity (200-211) | Draw one full transverse wave. Define the frequency, period, wavelength, amplitude and velocity by annotating and labelling your sketch. A ray of light shines through a thick piece of glass. Explain, using a diagram, why the light ray emerges from the glass travelling in the same direction as originally, but not along the same line. Sketch the electromagnetic spectrum, listing the seven parts in order. For each list their uses and dangers. Using diagrams, compare and contrast Rutherford's model of the atom with the plum pudding model. | | | | 2 | 07.05.18 | | Biology paper 2 extended response questions (57, 65, 75, 86) Chemistry paper 2 extended response questions (148, 1623, 165) | | | | 1 | 14.05.18 | Physics paper 2 extended response questions (214, 218, 232, 236, 239, 246, 250) Learn physics equations list (269) | | | |---|----------------------------|--|--|--| | | Biology Paper 1 15.05.18 | | | | | | Chemistry Paper 1 17.05.18 | | | | | | Physics Paper 1 23.05.18 | | | | | | Biology Paper 2 11.06.18 | | | | | | Chemistry Paper 2 13.06.18 | | | | | | Physics Paper 2 15.06.18 | | | |